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Abstract

I am interested in the study of proteins: their structure and the way they fold into a

stable structure. This is a vast field which requires collaboration between researchers

from various disciplines. Computational study of protein structure and motion raises

challenging problems of all kinds– from the basic and fundamental to the most ap-

plied. This report presents one of the interesting problems, idenftification of structural

patterns in proteins, I have been working on, in collaboration with other researchers,

at Stanford.

At the most basic level, an important question is: when are two protein fragments

structurally similar ? This is hard to answer quantitatively because of the trade-offs

between the size of the matching parts and the quality of the match. We study the

problem of finding structural patterns (motifs) in a protein and present a rigorous,

quantitatively-oriented formulation of the problem. We present a solution based

on ideas from computer vision and statistics. We also show how to use the extra

information available with proteins (e.g sequence information) in our framework. We

present some theoretical justification for our methods and also discuss some of the

experimental results. Part of this work was done jointly with Mitul Saha.
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Chapter 1

Introduction

1.1 Overview and Motivation

1.1.1 The Bird’s Eye View

Control of protein interactions (with each other and with DNA/RNA molecules) is

the primary mechanism by which nature controls the functioning of living organisms.

Typically, the interactions occur by a part of the protein docking into a comple-

mentary cavity on the same protein or some other protein. Alternatively, a small

molecule (ligand) can bind into a complementarily-shaped cavity in a protein. Un-

derstanding and predicting protein structure, therefore, is an important biological

problem. Among other things, this will lead to a better understanding and identifica-

tion of biochemical pathways in the cell, help design newer approaches for intervening

in malfunctioning systems (i.e. diseased tissues/organs) and help design and engineer

new protein molecules. Understanding protein folding, i.e., how a chain of amino

acids folds to attain its 3-dimensional structure will be very valuable in, say, nan-

otechnology where the ability of a system to self-assemble is critical.

Purely experimental strategies are often not sufficient for understanding protein

structure and the protein folding process. One of the reasons is that experimental

determination of structure is hard, time consuming and expensive. The SWISSPROT

1



2 CHAPTER 1. INTRODUCTION

database [1] contains sequence information about 109,000 proteins. However, infor-

mation about protein structure is far less abundant. The Protein DataBank [22]

contains structure information for only 18,000 proteins. While studying a protein,

one often wants to understand the changes to the structure due to mutations in the

genetic code or due to interactions with other molecules. This can be much easier to

accomplish in-silico rather than in-vivo. The latter might involve a series of repetitive

and time-consuming experiments.

Computational methods are also very valuable in studying protein folding prob-

lems. Understanding protein folding is important– proteins that don’t fold well can

cause problems (e.g. Alzheimer’s disease or cystic fibrosis). Insights into the protein

folding process can also help in determining ways to get protein-sized nanomachines

to self-assemble into desired structures. At the same time, experimental determina-

tion of the intermediate conformations in a protein’s folding pathway is very difficult

because of the extremely short half-life periods of the intermediates. As such, com-

putational studies of the folding process are often the only recourse left.

Computationally, a ball-and-stick model is typically the starting point for mod-

eling and studying protein structure: the atoms are treated as balls and the bonds

between them are treated as sticks (see Fig 1.1).

Using a knowledge of the distances between amino acids and the basic inter-atomic

interactions (e.g. electrostatic, Van der Waals, hydrogen bonds ) from chemistry an

energy function could be computed for an arbitrary spatial arrangement of balls (‘con-

formation’). Typically, there are constraints on the lengths of sticks (bond lengths)

and mutual angles (bond angles). There is a lot of basic data, albeit imperfect, on

the basic constraints and energy function. When predicting protein structures our

goal is to identify the conformation that minimizes the energy and also satisfies the

constraints. Similarly the problem of finding protein folding pathway(s) becomes the

goal of identifying the sequence(s) of valid conformations leading from the unfolded

state to the final, folded state and understanding the energetic/entropic properties of

the intermediate conformations.

My work at Stanford has been in the area of computer modeling of protein struc-

ture and protein folding. This chapter provides a brief description of my work. The
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Figure 1.1: Structure of the Peptide Bond
Each amino acid consists of a C (commonly referred to as Cα) atom to which a NH2, a
COOH group and a side-chain R are attached. Amino acids differ only in the structure of
their side-chains (e.g. R=H ⇒ Glycine). Peptide bonds are formed by the combination of
amide group (-NH2) of one amino acid with the carboxyl group (-COOH) of another amino
acid, forming the NH-CO bond (and one H2O). (a) shows the bond lengths and bond angles
involved. The lengths are in Å and the angles are in degrees. (b) shows the definitions of
torsional angles in the backbone of a protein. It also indicates the planar geometry of the
peptide bond.

next chapter describes my work in comparing protein structures in greater detail.

1.1.2 A Worm’s Eye View

Zooming into this general framework, I will now describe the specific areas that I have

been involved with and describe some of the related work being done at Stanford.

Our group’s (Prof. Jean-Claude Latombe’s research group) work in studying protein

modeling and protein behavior is split along two directions.

One is the study of geometrical and kinematics issues involved in computational

modeling of protein structures. A particularly challenging problem has been to ef-

ficiently detect if there are collisions between the amino acids (“steric clashes”) in

a conformation (Lotan and Schwarzer [2]). This in an important step in studying

protein structures, for it helps reduce the state-space (of valid conformations) by

invalidating conformations that violate the given constraints. Lotan and Schwarzer

have also been involved in developing efficient methods for calculation of approximate
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Root Mean Squared Deviation metrics for measuring structural similarities between

different conformations of a protein [4]. In this area, I have worked on the problem

of geometric matching. In particular, we (joint work with Mitul Saha) are interested

in finding (given) structural patterns/motifs inside protein structures. I describe,

in this report, an efficient solution for searching for motifs in a database of protein

structures. I have also been involved in determining efficient methods for solving

the inverse kinematics problem when proteins are modeled in terms of their dihedral

(torsional) angles.

The other direction of research in our group has been the study of protein folding–

in particular, developing efficient methods for computation of ensemble properties

in protein folding (transmission coefficients [5], [3]) and ligand-protein interaction

(escape times [6]). My work, in this field, has been in collaboration with many people

: M. Serkan Apaydin, Carlos Guestrin (Prof Latombe’s group), David Hsu (Prof

Jack Snoeyink’s group, Univ of North Carolina at Chapel Hill) and others like Bojan

Zagrovic, Chris Snow, Vijay Pande (Prof Vijay Pande’s group). When studying a

protein’s folding pathways, one would like to estimate the probability of an arbitrary

conformation of the protein folding into the stable conformation. The protein folding

problem has parallels to the robot motion planning problem. I have been involved

with other members of our group in exploring the application of Stochastic Roadmap

Simulations (Serkan et al. [3]) for calculating the aforementioned probabilities.

1.2 Brief Description of My Work

1.2.1 Core Contribution

I will now provide a brief description of my work in the different areas I have mentioned

before. The rest of this report will only focus, in greater detail, on the first part of

the work described below.
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1.2.2 Identifying Structural Motifs in Proteins

Structural patterns are often repeated across proteins. Thus, identifying these pat-

terns (motifs) can give crucial insights into how a protein behaves– not only for small

motifs but also for larger motifs. The search for smaller motifs (≤ 10 amino acids) is

typically done to identify sites where a protein would interact with other molecules

(active sites). Similar active sites would indicate similar functional characteristics.

On the other hand, larger motifs often form the structural components of a protein

and can also give insights into the functions of a protein. Finding a high-quality

match between a motif and an arbitrary protein is hard because the match will al-

most always be imperfect and often partial. Current protein motif search algorithms

are somewhat ad-hoc and lack rigor in quantifying the quality of match.

We first provide a formulation of the problem that is precise and rigorous. At the

same time, the formulation is flexible enough to incorporate different match criteria.

Then we pose this problem as an optimization problem. The crucial insight is that

protein structures are much more than purely geometric entities– there is a consid-

erable amount of information about amino acid sequences and secondary structure

that can be used to prune the search space.

1.2.3 Representations and Algorithms for Modeling Proteins

Proteins can either be represented in terms of an all-atoms Cartesian coordinate

representation or a (potentially) more compact representation based on the bond

lengths, bond angles and dihedral angles. During the course of my research, I fiddled

with a few different representation schemas for proteins and also experimented with

different energy functions. While representing protein backbones with dihedral angles,

it is common to assume that peptide bond has a planar geometry and hence the omega

(ω) angle is 180◦. Some of my experiments indicate this assumption is often violated.

Similarly, the choice of an energy function is somewhat dependent on the choice of the

modeling scheme. When representing a protein in terms of dihedral angles, an energy

function based on a all-atoms representation can be unstable i.e. slight perturbations

in the angles can produce vastly different energies.
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When modeling proteins, using a representation scheme based on dihedral angles

can lead to fewer redundancies. But many of the protein design goals are best ex-

pressed in Cartesian coordinates. In particular, we often need to solve the following

problem: given an amino acid X at position A and another amino acid Y at position

B, find a set of backbone dihedral angles for the protein such that protein forms

a connected chain between this points. Additionally, if there are multiple sets of

solutions there might be preferences for the positions of the amino acid residues in

between. This problem has parallels to the inverse kinematics problem in robotics.

The analogous problem there is to find the right orientation of links of a robot to

get the end-effector of the robot at the desired point. But, currently, computational

methods for solving this problem are known only for small chains (≤ 6 degree of free-

dom). In case of proteins there can be many more degrees of freedom. Since exact

solutions for the general case are not known, one has to find approximate solutions.

My approach is to start with any legal conformation and then incrementally (but

in a goal-driven way) deform the chain (to another legal conformation) until the

conformation matches the constraints posed in the problem. In order to rapidly find

the new conformation at every iteration, we use a sliding window based algorithm.

The window is moved along the chain and the sub-chain inside the window is tweaked

such that the points at the extremities of the sub-chain (approximately) retain their

position. Since the window contains a small number of amino acids (i.e., only a

few degrees of freedom), it is possible to apply inverse kinematic solution techniques

from robotics to determine legal conformations for this sub-problem. In order to

speed up each iteration, we maintain an efficient data structure (kd-trees) that stores

precomputed solutions for chains of size of the sliding window. For the part of the

chain inside the window, we can then query the data-structure to determine valid

conformations for the amino acids within the window.

1.2.4 Stochastic Roadmap Simulations (SRS)

Monte Carlo techniques, in general, are a powerful way of simulating system’s tran-

sitions from one state to another. For example, in order to determine the probability
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of a protein changing its shape from one conformation to another (e.g. the folded

state), Monte Carlo simulations can be applied. We start with a population of ran-

domly chosen starting conformations. To each conformation, we apply a series of

random, legal changes and observe how many members of the population reach the

final state.

However, Monte Carlo simulation techniques are computationally intensive and

can trace only one random walk at a time. In protein folding, a variety of pathways

are possible and the probability of an event, summed across all pathways, could be

of interest. Stochastic Roadmap Simulations (SRS), proposed by Serkan et al. [3],

provides a way to study the protein folding problem and get a detailed understanding

of all pathways and state transitions concurrently and at a much faster speed. The

results are guaranteed to be asymptotically the same as those from Monte Carlo based

techniques.

I explored the use of SRS in real-life cases, i.e., proteins of significant size/detail.

In particular, I studied the folding of beta-hairpin and ColiE1 ROP protein (1ROP)

using SRS. The former has been extensively studied by Zagrovic et al. [7] and thus

comparative studies are possible.

1.3 Focus of This Report

In this report I restrict my discussion to only one of the problems I have mentioned

above, the identification of structural motifs in proteins. Not only is the problem

biologically important, it also poses interesting computational challenges. The next

chapter discusses this problem and proposes a solution for it. I also discuss some ap-

plications of the proposed solution to biological problems. The final chapter provides

a quick summary of my work.



Chapter 2

Identifying Structural Patterns in

Proteins

2.1 Motivation

One of the fundamental axioms of molecular biology is that three-dimensional struc-

ture governs function. Indeed, a similarity in function across different proteins can

often be traced back to a similarity in structure. Thus, one can think of 3D structural

patterns (motifs) that are often preserved through different protein structures (Fig

2.1, 2.2).

Such patterns can be considered as ordered sets of amino acids. However, unlike

purely sequence based invariants, not only are the identities of the elements of the set

(amino acids) preserved but their relative positions and orientations in 3D space are

also (approximately) invariant. Active sites (Fig 2.1) and sub-domains (Fig 2.2) can

be thought of as examples of such patterns. Active sites are patterns with relatively

few (≤ 10) amino acids. The variations across different instances of the active-site are

small and the active site is often the determining functional and structural feature of

the protein. Sub-domains, in comparison, are much larger patterns, often consisting

of a combination of a few secondary structure elements. The structural variations

among different instances of a sub-domain can be relatively large. Large proteins are

often made of a collection of such sub-domains. Classes of proteins sharing similar

8
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(a) (b)

Figure 2.1: Example of a Small Motif
These are active sites from PDB files 1PIP and 5PAD. Note that only 3 amino acids make
the substructure of interest. Compare this with the much larger (and less conserved) motif
of Fig 2.2

structural and functional properties often share a “signature” sub-domain. Indeed,

the two most common methods of structure-based classification of proteins, SCOP

and CATH, are based on this idea [14], [15].

A method to find a match for a given pattern in an arbitrary protein has numerous

applications– protein-ligand binding, data-mining of databases of protein structures

etc. Significant advancements in these low-level tasks will facilitate higher-level tasks

like drug design. Most of the current approaches for the identification of active-sites

rely on building sophisticated sequence-based models to build a “consensus” repre-

sentation of the active site [12], [13]. However, these sequence based representations

are only an approximation to the underlying structural information. A method based

on structural matching would be more accurate.

The problem of finding a good match for a pattern in a protein has two parts. The

first part is finding the best match for the pattern in the protein. The second part

is to evaluate if this match is significant enough. For example, finding a close match

for a pattern of 10 amino acids is more significant than finding a close match for a
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(a) (b)

Figure 2.2: Example of a Large Motif
These are sub-domains, used by SCOP [14] for classification, that have been taken from the
PDB files 1E8C and 1GG4. Compare this figure with Fig 2.1 and note the difference in the
size of the motifs. Also, observe that the active site of Fig 2.1 is better conserved across
the two proteins.

pattern for 2 amino acids. The process of evaluating the quality of a match, however,

is somewhat subjective, depending on the goal of the biologist. There has not been

a lot of work on it, but we refer the interested reader to [21], [16]. In the rest of this

chapter, we shall restrict our focus to the first sub-problem: finding the best solution

for the given input. We first formulate the problem of finding an optimal match for

a given structural pattern in a given molecule. We then discuss a method for solving

the problem and evaluate it.

2.2 Problem Formulation

First, we introduce the notion of a multipoint.

Definition 1 A multipoint a ∈ M is an abstraction of a collection of points in <3

defined as
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(a) (b)

Figure 2.3: Example of an Active Site
The above figures show the active site of pepsin, a digestive protein. (a) Pepsin is the green
colored molecule. Notice the V-shaped groove where a red colored molecule is fitted. This
molecule acts as a pepsin inhibitor and prevents pepsin from acting on the body’s own
proteins. (b) This is a ball-and-stick view of the pepsin molecule, without the inhibitor.
Notice the V-shaped groove. At the bottom of the groove are two amino acids (enlarged for
emphasis) which are instrumental in cleaving a protein chain. A lot of digestive enzymes
share this kind of an active site. One of our sub-goals is to be able to recognize, given the
active site of, say, pepsin, similar active sites in other proteins too.

a = 〈~p, 〈û, v̂, ŵ〉〉

where ~p, û, v̂, ŵ ∈ <3, 〈û, v̂, ŵ〉 define a right-handed reference frame with its origin at

~p andM is set of all multipoints. Also, every multipoint a has a label la ∈ L where

L is the set of all possible labels.

We shall call ~p the anchor of a. Optionally, a distance measure between multipoints

of the same label can be defined. A multipoint a ∈M can have an associated distance

measure Da(b) which provides its distance from some other multipoint b which has

the same label as a. The calculation of this distance may depend on the internal

representation of the two multipoints.

Intuitively, a multipoint can be thought of as a model of a collection of points

(e.g. atoms in an amino acid) whose relative orientation stays the same even though

the whole group can undergo a rotation and/or translation. Associating a reference
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(a) (b) (c)

Figure 2.4: Multipoints
The above figures show how a multipoint would typically be constructed. A protein struc-
ture (a) can be broken into a collection of ‘significant’ points (b). For each group of points
that belong to one feature, we can construct an anchor and a reference frame (c).

frame with each multipoint enables one to define a rigid-body transformation that

maps one multipoint into another. The distance measure between two multipoints

will depend on the distances between the two sets of points they model. Given a

multipoint a = 〈~p, 〈û, v̂, ŵ〉〉, a rigid-body transformation T ∈ T is defined so that

applying T on a is the same as applying T on the points which a represents: T (a) =

a′ = 〈T (~p), 〈T (û), T (v̂), T (ŵ)〉〉. The distance measure associated with a, if any, will

be preserved i.e. Da(b) = DT (a)(T (b)). T is the set of all rigid-body transformations

in <3 i.e. some combination of translation(s) and rotation(s). One convenient way

of representing such a transformation would involve 7 variables: 3 variables for an

arbitrary translation and 4 variables for a quaternions based representation of an

arbitrary rotation [17]. The motivation behind associating a distance measure with

each multipoint individually will become clear shortly.

A pattern set P ⊂ M, |P | = m, is a set of m multipoints. Each multipoint

pi ∈ P has an associated distance measure Dpi
(). An example set Q ⊂ M, where
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|Q| = n and n ≥ m, is a set of n multipoints. These multipoints need not have

distance measures associated with them. Given P and Q, we can define the set of

possible correspondences between their multipoints:

CPQ = {〈r1, r2, . . . , rm〉|ri ∈ {1 . . . n}, ri 6= rj∀i, j and label(pi) = label(qri
)}

Notation: Henceforth, we shall use X[i] to refer to the ith element of the ordered set

X.

Each correspondence C ∈ CPQ induces an optimal rigid-body transformation TC

such that

TC = min
T∈T

m
∑

k=1

DT (pi)(qC[i]) (2.1)

We can now state the matching problem as follows:

Problem 1 (MATCH) Given the above definitions, find the correspondence C? and

the optimal transformation induced by it, T ?, such that

〈C?, T ?〉 = argmin
C∈CPQ,T∈T

m
∑

i=1

DT (pi)(qC[i]) (2.2)

In the definition of a multipoint, labels capture the intuition that an amino acid

of feature X can only match another acid of the same feature. In the simplest case,

the feature could be just the (residue) type of the amino acid. It could also indicate

if the amino acid is hydrophobic or polar. For larger motifs, the label could indicate

the secondary structure (helix, loop or strand) the amino acid is part of. If we want

to express the condition that feature X can match features X,Y or Z, we can just

introduce an aggregate feature α and replace all X,Y or Z by α.

Thus, we have formulated MATCH as the problem of finding the optimal corre-

spondence (and alignment) of the multipoints in the pattern set to the multipoints

in the example set. The pattern set P is an abstraction of a structural motif. The

example set Q abstracts the protein we are querying. Typically, each multipoint

models one amino acid. In particular, we might choose 3 points from the ‘backbone’

of the amino acid (the N,Cα and C ′ atoms, see Fig 1.1). Otherwise, one or more

of the points may be from the side-chain of the amino acid. Regardless of the way
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these points are chosen, this collection of points can be used to generate an anchor

and a reference frame, thus producing a multipoint. Henceforth, we shall assume

that each multipoint represents a list of points and the number of these points is the

same for two multipoints if they have the same label. Moreover, multipoints with the

same label should have the same structure, i.e., the way in which the anchor and the

reference frame were generated from the collection of points should be the same for

all multipoints sharing a common label.

However, as it stands, the problem is too general. We need more information

about how to model multipoints and their distance measures. By providing more

information about these can formulate different special cases of the problem, each of

which has a special biological relevance.

COMPLETE-MATCH

Here, the distance between two multipoints is the sum of the squares of the Euclidean

distance between the points making up the multipoint.

Problem 2 (COMPLETE-MATCH) Solve MATCH under the following constraint:

given any two multipoints a and b, both of which represent sets of k points each, the

distance between them is

D◦
a(b) =

k
∑

i=0

‖a(i)− b(i)‖2

where a(i) is the ith point in the list which the multipoint a represents and ‖x−y‖

is the Euclidean distance between x, y ∈ <3.

Note that this measure of distance directly corresponds to the Root Mean Squared

Distance (RMSD) metric which is commonly used in biology. Moreover, as we shall

soon see, it is relatively easy to find the optimal transformation T ? that minimizes

D◦
T (a)(b). The problem with this metric is that the influence of each pairwise distance

is quadratic in the size of the distance. This raises problems when we expect a partial

match between the two point-sets.
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PARTIAL-MATCH

We often need to capture the intuition that it is better to have a good fit on a subset

of the pattern point-set rather than a mediocre fit on all the points in the pattern.

For this purpose, we can borrow the idea behind M-estimators[27]. M-estimators are

statistical techniques designed for estimating statistical parameters in the presence

of outliers. We define D+
a () so that its dependence on the pairwise distances between

points is not quadratic. Instead, we use an influence function that grows more slowly:

Problem 3 (PARTIAL-MATCH) Solve MATCH under the following constraint:

given any two multipoints a and b, both of which represent sets of k points each, the

distance between them is of the form

D+
a (b) =

k
∑

i=0

ρ(‖a(i)− b(i)‖)

where ρ(x) is a monotonically non-decreasing function such that 0 ≤ dρ
dx
≤ x and

ρ is the same across all multipoints with a common label.

Thus, ρ(x) is an influence function designed so that the larger inter-point distances

do not overshadow the smaller one. The choice of a particular ρ depends on the

situation and the biological motivation. Some of the more commonly used choices are

shown in Fig 2.5. Some of these influence functions are rather intuitive. For example,

we might only be interested in matches where the distance between two points is less

than a given threshold. The Tukey estimator captures that intuition.

IMPRECISE-MATCH

Often, only imprecise information is available about the positions of the multipoints

in the pattern set. It would be preferable to capture this ambiguity in the distance

function. This can be done by modifying the construction of D+
a (·) from PARTIAL-

MATCH. For example, if it is expected that a point could lie within d units of a

central position, we might design ρ to reflect that:

ρ(x) =







0 if x<d

(x− d)2 otherwise
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Figure 2.5: M-estimators
The above figure shows the plots of 4 important M-estimators: a) Cauchy: ρ(x) = c2

2 log(1+

(x/c)2), b) German-McClure: ρ(x) = x2/2
1+x2 , c) Welsch: ρ(x) = c2[1 − exp(−(x/c)2)], d)

Tukey: ρ(x) = c2

6 (1− [1− (x/c)
2]3); where c is a constant.

Note that the specification of IMPRECISE-MATCH and PARTIAL-MATCH are

the same, so that an algorithm to solve PARTIAL-MATCH could also be used

for IMPRECISE-MATCH. In the rest of this discussion, we will not be discussing

IMPRECISE-MATCH specifically.

It should be obvious that each of these ‘theoretical’ formulations is an abstraction

of a corresponding biological problem. COMPLETE-MATCH abstracts the problem

of looking for well-preserved matches of a given active site or sub-domain in a protein.

PARTIAL-MATCH, on the other hand, would be of interest when we expect that

the matching region will not be well-preserved and some of the amino acids part

of, say, the active site could be significantly displaced from their expected (relative)

position. Lastly, IMPRECISE-MATCH models that situation.when we observe a lot

of variation in the structure of an active site across different proteins and need to

encode that ambiguity in our problem description,

2.3 Related Work

The identification of a structural pattern in a protein has strong parallels to the object

recognition problem in computer vision.

Before we proceed, its worth noting that many of the methods mentioned below

rely on a well-known technique for the finding the optimal rotation and translation
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for aligning two sets of n points, i.e., the rotation and translation that results in

the minimum RMSD in the alignment of the two point sets. The method, initially

proposed by Faugeras [9] and Horn [10], assumes that the correspondences between

the points in the sets are known and boils down to finding the largest eigenvalue of a

4× 4 matrix.

Kleywegt et al.[30] have released programs (SPASM, RIGOR) that look for small

motifs (e.g. active sites) in a given protein using a brute-force approach. Their

methods are based on the idea that inter-point distances are invariant w.r.t. rotation

and translation. They start by modeling the motif and the protein as sets of points in

3D. Then they calculate pair-wise distances between points of the motif and repeat

this process for the points of the protein. Since distances are invariant w.r.t. rotations

and translations, we only need to find a set of (self-consistent) inter-point distances

in the protein that match the corresponding inter-point distances in the motif. Thus,

we can infer the correspondences between the points in the pattern (motif) and the

example (protein). Once the correspondences have been found, it is easy to solve for

best possible transformation (rotations and translations only) which map the points

of the pattern to the corresponding points in the example (assuming that we are

solving COMPLETE-MATCH). Thus, one only needs to do an exhaustive search in

the space of inter-point distances. Their approach also uses the labeling information

available with the motif and the protein and uses it to prune the search space (e.g. a

carbon atom should only match another carbon atom).

The basic problem with this method is that it handles the matching problem in an

indirect fashion: when two sets of n points match perfectly, the (n2 ) pairwise distances

corresponding to each set will also match perfectly. However, when the match is

imperfect, it can not be expressed easily in terms of an imperfect match between the

corresponding pair-wise distances. As such it is not necessary that the final answer

returned by this approach will be optimal in the LSE (least sum of squared errors)

sense (see Fig 2.6). The other problem with this approach is that because it performs

an exhaustive search of the possible correspondences, it gets infeasible as soon as the

size of the motif increases beyond a few amino acids.

In 1991, Wolfson and Nussinov [32] proposed a technique (Geometric Hashing) also
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C D
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D C

A

B

C

D

A

Pattern Example #1 Example #2

Figure 2.6: Matching Pairwise Distances Is Not Always a Good Idea
The above figure shows a typical case where matching pairwise distances can lead to a sub-

optimal result. Example #2 is more similar to the pattern than example #1. However, only

one line (the blue line) in Example #2 does not have the same length as the corresponding

line in the pattern. In example #3 there are three such lines (all the red and blue lines).

Thus, Kleywegt’s algorithm would choose example #1 over example #2.

based upon the idea that distances are invariant under rotations and translations.

This involves a preprocessing step. For each triplet of points in the example set

(protein) they calculate the position of all other points w.r.t. the reference frame

defined by these points. Then they build a hash table where the key describes the

relative orientation of the three points w.r.t. each other and the relative orientation

of a point in the example set w.r.t. this triplet. The value corresponding to this key

contains the actual indices of the relevant points. Given a pattern set (motif) the same

procedure is repeated. For each key in the motif’s hash table, we can then use it to

index into the protein’s hash table and find the corresponding sets of points. We then

calculate the optimal set of transformations for each such correspondence (assuming

the minimum RMSD criteria). This transformation receives votes from each point

in the pattern depending upon how happy the point is with the transformation– i.e.
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how well the point is matched. The most highly voted transformation wins. This

idea and its variants are parts of several techniques [33], [34]. Pennec et al proposed a

modification in which they exploited the geometry of amino acid structure to attach

a reference frame to each amino acid than triplets of amino acids. This reduced the

size of hash-table significantly. Geometric hashing is a powerful approach, but it has

the same kind of problem as the approach of Kleywegt et al. It is hard to establish

a link between the output of this algorithm and the desired optimum. Also, this

method requires significant amounts of preprocessing which can be undesirable in

certain situations.

Venkatasubramanian et al. [35], [36] have worked on the problem of discovering

structural invariants in a collection of different conformations of the same molecule.

They formulate the problem in terms of finding a common substructure of size ≥ αn

in a point-set of n points and present randomized algorithms for this problem. Some

of the intuition behind their algorithms is also shared by Algorithm 3 presented later

in this report. However, they are primarily concerned with discovering only well-

conserved invariants across point-sets of the same size. Our algorithms are oriented

towards the case where the example would typically be much larger than the pattern,

leading to many regions of interest in the example. Also the condition that the pattern

be well-conserved in the example is often violated in our problems. Indeed, our goal

is to let the biologist specify, by defining an appropriate influence function ρ(x), the

acceptable trade-off between size of the match and the quality of the match.

2.3.1 Iterative Closest Point

In 1992 Besl and McKay [28] presented the Iterative Closest Point Algorithm. The

algorithm provides a locally optimum match between two point sets i.e. it returns

a correspondence and the induced optimal transformation between two unlabelled

point sets. The distance metric is the same as the RMSD metric or the one used

in COMPLETE-MATCH. The basic idea is that at any point, the (currently) best

estimate of the optimal transformation can be used to improve the (currently) best

estimate of the optimal set of correspondences and vice-versa. By iterating over these
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operations, the method converges to a locally optimal solution. Algorithm 1 describes

their method in greater detail.

The algorithm is guaranteed to converge because in each step in Algorithm 2, the

least mean squared error can only decrease i.e. dr ≤ dr−1. However, the minima

which it reaches may well be a local minima and the algorithm is highly dependent

on the the starting position for the data set w.r.t. to the model set.

2.4 Method

Just to recapitulate, we are interested in the problem of finding an optimal match

between two sets of multipoints (MATCH). Each multipoint represents a collection

of points and only multipoints with same labels can match. The distance measure

between two multipoints can be an arbitrary function.

Here are some of the observations that guided our approach:

• In Algorithm 1 (ICP), if we replace the Euclidean distance function by any

other function, the algorithm is still guaranteed to converge to a local optimum

because each step in each iteration of the algorithm can only reduce the error

i.e. dr+1 ≤ dr. Of course, the optimal transformation to map Sr to Z must

be optimal with respect to the specific distance measure and the methods of

Faugeras et al. may not be applicable.

• The quality of the final match returned by ICP depends on the initial placement

of the pattern relative to the example. Suppose that we can identify, in the

example, a few (small) regions of interest one of which also contains the optimal

match. For each such region, we can seed ICP by placing the pattern near this

region of the example.

• The frequency of occurrence of different features, among the set of amino acids,

is often uneven. For example, if one were to label amino acids just by their

residue type, the most frequent amino acid, Leucine, is 6.85 times more abun-

dant than the least frequent amino acid, Tryptophan [39]. In our formulation,

only multipoints of the same label can be matched. The proper choice of label
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Input: Given a pattern set (motif) S = {s1, s2, . . . , sJ} ⊂ <3 and an

example set (protein) Z = {z1, z2, . . . , zK} ⊂ <3, J ≤ K, we can define

a correspondence C : {1, . . . , J} → {1, . . . ,K} as an injection (one-to-one

mapping) from the points in S to the points in Z. A transformation

T : <3 → <3 is a rotation and translation of points in <3.

Goal: Find the optimal transformation T ? and the optimal correspondence

C? such that

〈C?, T ?〉 = argmin
〈C,T 〉

J
∑

i=1

‖T (si)− zC(i)‖
2

Algorithm:

1. Initialize: S0 = S, r = 1, d0 =∞

2. While ( r < MAX-ITERATIONS and dr−1 > ERROR-THRESHOLD)

(a) Set correspondences so that each point in Sr corresponds to

closest point in Z:

Cr(i) = argmin
y∈{1,...,K}

‖Sr−1[i]−Z[y]‖

where S[i] is the ith point in S

(b) Find the optimal transformation for these correspondences

using the method by Faugeras and Horn, [9] [10]:

Tr = argmin
T

J
∑

i=1

‖T (S0[i])−Z[Cr(i)]‖
2

(c) Set Sr[i] = Tr(S0[i]), i = 1, . . . , J

(d)

dr =
J

∑

i=1

‖Sr[i])−Z[Cr(i)]‖
2

(e) Set r = r + 1

3. Return C? = Cr−1, T
? = Tr−1

Algorithm 1 Iterative Closest Point Algorithm
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(a) (b)

(c)

Figure 2.7: ICP
The goal is to align the red (short) curve with the blue (long) curve. (a): For each point of

the pattern (red) set, find the closest point on the example (blue) set and build the list of

corresponding points. (b): Find the optimal transformation that aligns these corresponding

points. (c): After many iterations the curves have been optimally aligned.

for this purpose can help us in reaching the optimum quickly by reducing the

number of regions chosen.

Our method to solve MATCH is described in Algorithm 2. The initial step of our

method consists of identifying regions of interest by using a small set of multipoints

from the pattern as pivots. We find sets of multipoints from the example such that

these multipoints could correspond to pivoting multipoints in an optimal match. For

each such possible correspondence, we transform the pattern so that the pivoting

multipoints are aligned with their (guessed) counterparts. We then use an ICP-like

algorithm to find the best match in that region.
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Input: Given a pattern P = {p1,p2, . . . ,pm} and an example Q =
{q1,q2, . . . ,qn} where pi,qj ∈ M and m ≤ n. Recall that M is the set

of multipoints in <3

Goal: Define the set of possible correspondences between P and Q:

CPQ = {〈r1, r2, . . . , rm〉|ri ∈ {1 . . . n}, ri 6= rj∀i, j and label(pi) = label(qri
)}.

A transformation T is a rotation and translation in <3. Since this

operation is analogous for both points and multipoints, we shall use

the symbol T for both the meanings, i.e., T : <3 → <3 and also,

T : M → M. Find the optimal correspondence C? ∈ CPQ and the

corresponding transformation T ? such that

〈C?, T ?〉 = argmin
〈C,T 〉

m
∑

i=1

DT (pi)(qC(i))

Algorithm:

1. Generate seeds: choose some multipoints pα,pβ , . . . ∈ P such that

RegionsOfInterest((pα,pβ , . . .), Q) = S returns only a few sets of

possible matches.

2. Initialize dbest =∞

3. For each (q′
α,q

′
β, . . .) ∈ S, do

(a) Find Initial Transform: T1 = OptimalTransform((pα,pβ , . . .)-
, (q′

α,q
′
β, . . .))

(b) Initialize: P1[i] = T1(P [i]), i = 1, . . . ,m.

(c) Initialize: r = 1, d0 =∞, d1 = LARGE-NUMBER

(d) While (r < MAX-ITERATIONS and dr < dr−1)

i. Set r = r + 1

ii. Find correspondences: set correspondences so that each

multipoint in Pr corresponds to the closest multipoint in

Q:

Cr[i] = argmin
y∈{1,...,n}

DPr−1[i](Q[y])

where X[i] is the ith multipoint in ordered set X

iii. Find the optimal transformation for these correspondences:

Tr = OptimalTransformation((P [1], P [2], . . . , P [m])-
, (Q[Cr[1]], Q[Cr[2]], . . . , Q[Cr[m]]))

iv. Set Pr[i] = Tr(P [i]), i = 1, . . . ,m
v.

dr =
m

∑

i=1

DPr[i](Q[Cr[i]])

(e) Update: if dbest > dr then set C? = Cr, T ? = Tr, dbest = dr

4. Return C?, T ?

Algorithm 2 General algorithm for solving MATCH
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Two functions in the algorithm need further elaborations:

RegionsOfInterest This function returns the regions in the example set, Q, where

a globally optimum match can be found. It takes as input a set of pivoting

multipoints (pα,pβ, . . .) in the pattern P and returns a list of possibly optimal

correspondences that this set can have in Q. Each set in this list, (q′
α,q

′
β, . . .),

indicates that the correspondences pα ↔ q′α,pβ ↔ q′β, . . . can be part of a glob-

ally optimum match. Thus, at the start of each iteration in Step 3 we have a

new region of interest to explore. Step 3.(a) transforms the pattern P so that

the pivoting multipoints are aligned with the corresponding multipoints from

Q.

This function can be implemented by choosing some multipoints from the pat-

tern and looking, in the example set, for sets of multipoints whose labels and

relative orientations are consistent with those of the chosen multipoints from

the pattern. Our aim is to get only a few regions of interest. As the simplest

choice, one could pick just one pivoting multipoint from the pattern and, from

the example, choose all multipoints that have the same label as this multipoint.

In a more sophisticated approach, one can pick a collection of multipoints from

the pattern. While looking for sets of matching multipoints in the example,

the constraints would also be based on the relative orientation of these multi-

points. Such constraints can be efficiently implemented, say, by using kd-trees.

So if our active-site has a Tryptophan and a Lysine within 5 Å of each other,

we could search in the protein for those areas which have a Tryptophan and a

Lysine within, say, 7 Å of each other. The best choice of pivoting multipoints

from P and the related constraints will require some biological knowledge. For

example, if we chose only one pivoting multipoint from P , it is best to choose

one with a label that is expected to be the least frequent in the example set

(e.g. prefer Tryptophan over Leucine).

OptimalTransform Given a set of corresponding multipoints X = {x1,x2, . . . ,xk}

and Y = {y1,y2, . . . ,yk}, this function returns the transformation T ? that
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results in the minimum total error:

T ? = argmin
T

k
∑

i=1

DT (xi)(yi)

In the case of COMPLETE-MATCH, the distance function is just the sum

of the squares of the Euclidean distances between the points making up the

two multipoints. As mentioned before, there are well known methods that can

compute the optimal transformation (in a least squared error sense) such that

final error is minimum. These methods rely on computing a 4× 4 matrix from

the given data and calculating the largest eigenvalue of this matrix [9], [10].

In the case of PARTIAL-MATCH, OptimalTransform() will reduce to finding

the optimal transformation under a distance measure D+() (see Problem 3). I

am not aware of any methods that can provide a provably optimal transforma-

tion for an arbitrary choice of ρ() in such a distance measure. One approach

is to express the transformation in terms of some variables, (e.g. 7 variables in

a quaternion-based representation), and use some optimization technique (e.g.

gradient descent) to search for the optimum solution in this space. But such

methods are slow and can get stuck in local minima.

We have built our method for finding the optimal transformation on the follow-

ing observation: the fraction of ‘bad’ data-points (or outliers), w, is expected to

be low– otherwise the match won’t have any biological significance. On picking

a random sample from the data, there is a low probability that some the points

in the sample will not be ‘good’. This probability can be reduced further by

taking samples many times. Then we can use the method by Faugeras and

Horn, [9] [10], to calculate an optimal transformation for this subset, using the

Euclidean distance measure. Since our distance function gives lower weight to

the bad cases, this transformation should be a pretty good choice for the whole

data too. Our method, described in Algorithm 3, is similar to the RANSAC

method [43]. In Algorithm 3, the (arbitrary) distance measure is used to esti-

mate the error threshold beyond which a matching point should be classified as
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an outlier. The best transformation from each region of interest (Step 2, Algo-

rithm 2) is scored using the (arbitrary) distance measure (Step 2.v, Algorithm

2) and the transformation with the lowest error under this distance measure is

chosen.

2.5 Analysis

The efficacy of Algorithm 2 depends on two factors. One is our ability to generate

a small list of regions of interest in the example (protein) while ensuring that the

global optimum will be one of these. The second factor is the ability of the algorithm

to explore any region of interest efficiently. We will discuss these in slightly greater

detail now.

The first step of Algorithm 2 is to pick some multipoints from the pattern and find

all sets of multipoints from the example that are consistent with this set. This step

should execute reasonably quickly and output only a small set of possible matches

(yes, there is a trade-off). The running time of this step will depend on the constraints

and the number of pivoting multipoints chosen, but it is expected to be much less

than than the running time of Step 3.

In the second part of the algorithm, we iterate over each of the regions of interest

discovered earlier and start our search by aligning the chosen multipoints. Note that

every multipoint has a reference frame so that it is possible to find a transformation

even with just one pair of matching multipoints. The basic intuition is that once we

have place the pattern near the region of interest in the example, the algorithm can

take us to the locally best match which could also be the global minimum. Of course,

the algorithm might still go wrong and stray towards a sub-optimal match even if the

global optimum was indeed present in that region. We shall now try to provide some

intuition for why something like this is unlikely i.e. once the algorithm has gotten on

the trail towards the optimal match, it is unlikely that it will stray.

We analyze the case corresponding to COMPLETE-MATCH. Given a pattern set

U ⊂ <3, we construct a test set V ⊂ <3 as follows: first, we apply a random rotation

and translation to U and randomly add points around it such that the probability of
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Input: We are given two sets of points in 3D: X,Y ⊂ <3, |X| = |Y | = k.
We also know the correspondences between these points i.e. X[i]
corresponds to Y [i]. We are also given a distance function between these

points, D+
X(Y ) =

k
∑

i=1

ρ(‖X[i]− Y [i]‖). We also have prior knowledge that

the fraction of outliers in X is expected to be less than w, 0 < w < 1.

Goal: Find a transformation T that minimizes D+
T (X)(Y ).

Algorithm:

1. Initialize r to be some small number greater than 2. This is the

size of sample we will draw each time.

2. Choose ERROR-THRESHOLD such that if

‖pactual − pexpected‖ >ERROR-THRESHOLD then pactual is classified

as an outlier (according to D+
X()).

3. Choose d such that d > log(1− α)/ log(w) where α indicates the

required confidence level in the final output (e.g. α = 0.95).
Set nbest = 0.

4. For i = 1, . . . , cwr log(n), where c is some constant, do:

(a) Pick a sample si ⊂ {1, . . . , k}, |si| = r, randomly. Denote Asi
=

{A[si[1]], . . . , A[si[r]]}, where A[u] is the uth element in A.

(b) Using the method of Faugeras and Horn [9], find the

transformation Ti such that Ti = argmin
T

r
∑

l=1

‖T (Xsi
[l])− Ysi

[l]‖2

(c) Apply Ti on all points in X and find the points that agree

with this transformation: XTi
= {l|1 ≤ l ≤ k, ‖Ti(X[l]) − Y [l]‖ <

ERROR-THRESHOLD}. Set ni = |XTi
|.

(d) If ni > nbest, Tbest = argmin
T

∑

l∈XTi

‖T (Xsi
[l])− Ysi

[l]‖2

(e) if ni ≥ d, break

5. Return Tbest

Algorithm 3 OptimalTransform() for PARTIAL-MATCH
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a point being present in any given unit volume is γ. This is the test set V . γ indicates

the density of points in the test set– if the test set is densely packed, there should be a

greater chance for any method to make mistakes, i.e., infer incorrect correspondences

between points of the pattern set and those of the test set, even if it is close to the

global optimum. Also, for notational convenience, we shall use U ′ ⊂ V to refer to

the subset of points which exactly match U i.e. we want the algorithm to output

U [i]↔ U ′[i] as the final correspondences. We also introduce the term β which is the

ratio of the largest inter-point distance in U to the smallest inter-point distance in U .

β captures the shape of the pattern: skinny, cylindrical patterns will have a larger β

than fat, cuboidal patterns.

Lemma 1 If, at the end of Step 3.(d).iii in Algorithm 2, Tr maps at least 3 points

from U within an ε-neighborhood of their correct matches i.e. ‖Tr(U [si])−U
′[si]‖ < ε,

i = 1, 2, 3, then the probability that, for any point U [i] ∈ U , Tr(U [i]) is not the closest

point to U ′[i] is less than 4
3
πγ(βε)3

Proof: Look at the Fig 2.4. The red points belong to U . The blue points belong to V .
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Figure 2.8: Algorithm 2 Won’t Stray Too Often

Of those, the light blue points are randomly selected and the dark blue points belong
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to U ′. If at least 3 points in U are within ε of the matching points from U ′, then any

other point can only be βε away from its corresponding point in U ′. The probability

that one or more randomly chosen points will be present within that neighborhood

is less than 4
3
πγ(βε)3

Thus, studying the idealized situation shows why the given algorithm should work.

We also look at the OptimalTransform() function. In the case of COMPLETE-

MATCH, this is simply the method of Faugeras and Horn and is provably optimal.

In the case of PARTIAL-MATCH too, we can still make some claims about its per-

formance. Recall that the proportion of outliers in the data is expected to be less

than w; our sample size is r and the size of data set is n. In Algorithm 3, we take

cwrlg(n) samples of size r from the data.

Lemma 2 In Algorithm 3, the probability that all of the cwr log(n) samples (each of

size r) will have at least one outlier i.e. none of the samples is ‘good’ is less than 1/n

Proof: The probability that one sample of size of size r contains an outlier is wr.

Applying Chernoff bounds, [42], we get the required bound

We also make the following observation

Lemma 3 In Algorithm 3, if d points agree on a transformation where d > log(1 −

α)/ log(w), then the probability that all the d points are outliers is less than α.

Proof: Applying the inequality 1− wd > α gives the answer

2.6 Results

In this section, we discuss the application of our algorithm to the problem of matching

active-sites in proteins.

2.6.1 COMPLETE-MATCH

To give an idea of the extent of pruning (Step 1 in Algorithm 2) done by our algorithm,

here are snapshots showing the real size of the protein and the set of possibilities

remaining after we had done the pruning.
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(a) (b)

Figure 2.9: Pruning the Search Space
The above figures show the magnitude of reduction in search space when we use the extra

information available to us. The active site to be matched is in the bottom right corner and

the target protein is in the top left corner. (a) Before pruning, we will need to search all

possible matches. The red colored sub-structure is the actual matching site in the protein

(b) After pruning, note how few possible matches are left. Moreover, only amino acids of

the same color can be matched (e.g. green with green). Also note, that there are very few

blue amino acids in the protein. They can be used for seeding ICP’s starting positions.

To test the quality of the matches returned by our algorithm (for COMPLETE-

MATCH), we downloaded two sets of protein structures from the Protein Data Bank

[22]. We chose about 42 different variants of the protease trypsin and about 37

different types of kinases. Choosing the trypsin (consensus) active site [41] as our

pattern, we ran our matching algorithm against the trypsins and then against the

kinases. Fig 2.9 will help the reader get a feel for the extent of pruning (Step 1 in

Algorithm 2) done by our algorithm. The results of our experiments are summarized

in the plots shown below (Fig 2.10, 2.11). We were able to detect active sites in the

trypsin-like molecules to a high degree of accuracy. Indeed, in 32 of the 42 trypsin-like

molecules, we were able to achieve RMSDs less than 0.5Å, indicating a near perfect

match. As for the remaining 10 molecules, we looked at the individual structures
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to investigate the reason for a higher RMSD. In 3 of these, the X-ray information

about the structure was incomplete. In other 4, the sub-structure inside the protein

indicated by our algorithm was indeed the active site. However, its structure was

somewhat distorted and hence the alignment score was bad. Finally, in the remaining

3 cases, our algorithm had not converged on to the optimal match.

When we tried to match the trypsin active site against the kinases, we expected to

get low-quality matches. Most of the matches returned alignments where the RMSD

was more than 2 Å– a low score considering that active site of trypsin is relatively

small and hence a rough match for it can be found in many proteins. The interesting

observation was that there were some kinases in which we could obtain really high

quality matches. Some of these turned out to be buried inside the protein and hence

could not be an active site. In general, structure based alignment methods will have

the problem that they might discover matches which lie inside the surface. When

we are looking for active sites, such matches are often irrelevant because active sites

are almost always on the molecular surface. This, however, is a problem faced by

almost all structure based techniques. Finally, there were 2 kinase-type molecules

which matched the trypsin active site on their surface. It would be an interesting

biological problem to determine if these kinases share any functional similarity with

trypsins.

2.6.2 PARTIAL-MATCH

To evaluate partial matches, we distorted the trypsin active site by displacing two of

the amino acids and then changing their orientation randomly. One of these amino

acids was given a large displacement (' 8Å) while the other was given a smaller

displacement (' 1.5Å). Our aim was to find an alignment that would ignore the

most outlying amino acid and align (a part of) the protein with the rest of the motif.

First we used the same distance measure as in COMPLETE-MATCH i.e. the Least-

Sum-of-Squared-Error criterion. We used the version of the algorithm designed for

COMPLETE-MATCH.

We then replaced the the distance measure with one of the M-estimator (we found
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Figure 2.10: COMPLETE-MATCH on Trypsins
Y axis: RMSDs between motif (trypsin active site) and (matching part of protein) in Å. X

axis: 42 proteins belonging to the Trypsin family. Observe that the quality of the match is
near-perfect for most of the proteins. This confirms that all these proteins share the same
structural and functional properties.

the Tukey estimator gave the best results) based criteria (PARTIAL-MATCH) and

ran our algorithm. In one set of experiments, we used a gradient descent based

approach to find the best transformation that minimized the error (in OptimalTrans-

form()). As mentioned before, finding such an optimal alignment is hard. In another

set of experiments, we used Algorithm 3 to find the best transformation that min-

imized the error under the distance measure. The following figures (Fig 2.12, 2.13,

2.14) show a typical example of how these three methods behaved. Fig 2.15 sum-

marizes the results of a comparison of these three implementations with a distorted

active site.
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Figure 2.11: COMPLETE-MATCH on Kinases
Y axis: RMSDs between motif (trypsin active site) and (matching part of protein) in Å.
X axis: 37 proteins belonging to the Kinase family. Observe that most molecules don’t
have good matches. A RMSD of 2Å can be achieved because the trypsin active site is small
and hence possibilities of chance matches are high. There are a few kinase which have very
good matches with trypsin active sites. It would be an interesting biological question to
explore if these kinases share some properties of trypsins.

2.7 Future Work

Currently, we are exploring the use of our methods for identifying much larger motifs

in proteins. There are a lot of open problems in this area. The correct choice of

features to match can drastically reduce the search space. Choosing the right ρ for a

distance measure in PARTIAL-MATCH requires some more biological understanding

of different possible scenarios.
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Figure 2.12: PARTIAL-MATCH
Solve for COMPLETE-MATCH: ρ(x) = x2: The thick structures are part of the
(distorted) active sites we want to match. The thin yellow structures are the part of
protein which should match. Algorithm 2 (with the distance measure being the same as in
COMPLETE-MATCH) tried to find a best match for this out of tune feature but matched
it to an incorrect amino-acid. Notice how the thick green structure (upper right quadrant)
is mismatched to the wrong amino acid. Because of this, the other two matches (the good
ones) also got mixed up
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Figure 2.13: PARTIAL-MATCH
Tukey Estimator + Generic Optimizer for OptimalTransform() : We ran our
algorithm with the Tukey estimator (c=2) as the distance function. We did not use Algo-
rithm 3 for finding the optimal transformation. Instead, we used an off-the-shelf package
for finding the optimal transformation. This choice performed better than modeling the
match as a COMPLETE-MATCH (Fig 2.14) but it was not good enough. Notice how all
the thick structures are assigned to the correct yellow corresponding structures, but they
are all misaligned. This is because the function to find the optimal transformation had not
converged.
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Figure 2.14: PARTIAL-MATCH
Tukey Estimator + Algorithm 3 for OptimalTransform(): We ran our method
(Algorithm 2) with the Tukey Estimator as the distance function and also used Algorithm
3. Here our algorithm chose to ignore the outlier, the dark green feature. Instead, it gave
a much better fit on the remaining two features. This is what we wanted
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Figure 2.15: Comparison of partial matching methods
Y axis: RMSD between the aligned pattern and the matching sub-structure in the protein,
after removing the outlier pair from the match. The pattern is a distorted version of the
trypsin active site. X axis 9 different proteins from the Trypsin family. Here we compare
the minimum alignment error after excluding the ‘bad’ amino acid. Ideally, this should be
close to zero. Using the normal Least Square Error criterion gives the poorest performance.
Using M-estimator based error criteria, we can get better performance. If, in addition, we
also use Algorithm 3 for aligning the two point-sets, we get the best results.



Chapter 3

Conclusion

In this thesis, the following contributions were made:

Identifying Structural Motifs in Proteins We have presented a rigorous formu-

lation of the problem of finding a match for a given substructure in a protein.

Unlike previous approaches, our formulation can provide quantitative scores for

even partial matches. We then introduce some robust matching and estimation

techniques from other fields in computer science and statistics and show they

can be adapted to the purpose of matching protein structures. We then discuss

ways to enhance these algorithms by pruning the search of best matches by

using the extra information available with proteins.

In addition to these, I have also worked on some other problems. In particular,

I have been involved in designing and evaluating an algorithm that enables us to

(approximately) solve the inverse kinematics problem for protein chains in an efficient

and incremental manner. The algorithm depends on precomputation of solutions

for short chains of proteins and uses the information to make quick, incremental

modifications to the protein chain. Along with M Serkan Apaydin, I have also worked

on identifying and solving the problems in applying Stochastic Roadmap Simulations

to proteins of significant size and complexity.
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