Algorithms for the Analysis of Protein Interaction Networks

Rohit Singh MIT

Thesis Defense
July 27, 2011

Outline

- Introduction to Protein Interactions
- Algorithms for PPI Networks:

Data Acquisition

Protein interactions are crucial to the cellular system

- Proteins interact with other proteins to perform their functions
- Many cellular activities are a result of protein interactions

6600

14000

Number of Genes

In recent years, the approach to PPI analysis has changed

- Old perspective: low-throughput, structural
- New perspective: high-throughput, graph-based

Old perspective

New perspective

High-throughput experiments are providing a lot of PPI data...

Yeast Two-Hybrid

An Example PPI Network: Yeast

Outline

- Introduction to Protein Interactions
- Algorithms for PPI Networks:

Data Acquisition

Influence flow:

IsoRank \& IsoRankN

Goal: global alignment of PPI networks

Why?

- Comparative genomics on a network level
- Estimate functional orthologs: gene correspondences across species

How?

- Intuition: match nodes whose neighborhood topologies match
- Construct an eigenvalue problem
- Collaborators:
- IsoRank: Jinbo Xu \& Bonnie Berger
- IsoRankN: Chung-Shou Liao, Kanghao Lu, Michael Baym \& Bonnie Berger
- IsoBase: Daniel Park, Michael Baym \& Bonnie Berger
- Previously presented/published:
- RECOMB 2007
- PSB 2008
- Proceedings of the Nat’l Acad. Of Sciences, 2008
- ISMB 2009 \& Biolnformatics 2009
- Nucleic Acids Research (Database Issue) 2011

Network Alignment: Local vs. Global

Local alignment \#1

Local alignment \#2

- Local vs. global alignment
- Getting an overall match vs querying small patterns
- Parallels with sequence alignment (local vs. global)

Network Alignment: Local vs. Global

Local alignments: More than one mapping per node

> - PathBlast (Kelley et al.)

- Local vs. global alignment Koyuturk et al.
- Getting an overall match vs qu - Graemlin
- Parallels with sequence alignment (local vs. global)

Network Alignment: Local vs. Global

- Getting an overall match vs querying small patterns
- Parallels with sequence alignment (local vs. global)

Problem Formulation

Given

1. Two or more undirected PPI graphs, one per species. Each graph contains all known PPIs for the species
2. [Optional] Pairwise similarity scores between proteins of the various species

Find

1. Cross-species mapping between nodes of the various graphs. Must be closed under transitivity.
2. Estimate the common PPI subgraph across various species
3. [Optimality] Given just PPI graphs, maximize common subgraph size

Evaluation

1. Quality of mapping: 1) GO enrichment, 2) other orthologs
2. Coverage

Algorithm: IsoRank

Computing R: just network similarity

- R_{ij} depends on neighborhoods of i and j

$$
R_{i j}=\sum_{u \in N(i)} \sum_{v \in N(j)} \frac{1}{|N(u) \| N(v)|} R_{u v}
$$

- $N(a)$ is the set of neighbors of a

Example: Computed R_{ij} values

Empty cell indicates $\mathrm{R}_{\mathrm{ij}}=0$

Example: Computed R_{ij} values

Empty cell indicates $\mathrm{R}_{\mathrm{ij}}=0$

Computing R is an eigenvalue problem

- The equations for R describe an eigenvalue problem

$$
\begin{aligned}
R & =A R \\
A[i j][u v] & =\frac{1}{|N(u) \| N(v)|} \\
\operatorname{size}(A) & =N_{1} N_{2} \times N_{1} N_{2} \quad \begin{array}{l}
\mathrm{N} 1=\# \text { nodes in Graph 1 } \\
\mathrm{N} 2
\end{array}=\# \text { nodes in Graph 2 }
\end{aligned}
$$

- A is about $10^{8} \times 10^{8}$ when aligning yeast and fly networks
- However, both A and R are very sparse.
- We use the Power method to efficiently compute R
- Extension to weighted edges is straightforward

Computing R: including sequence data

- Let $\mathrm{B}_{\mathrm{ij}}=$ similarity score between i (from graph \#1) and j from (graph \#2)
- $\mathrm{E}_{\mathrm{ij}}=\mathrm{B}_{\mathrm{ij}} /|\mathrm{B}|$

$$
\begin{aligned}
& R=\alpha A R+(1-\alpha) E \\
& 0 \leq \alpha \leq 1
\end{aligned}
$$

Algorithm: IsoRank

Stage 2: Two-species case Compute one-to-one mapping

- Strategy \#1: Max Weighted Bipartite matching
- Strategy \#2: Greedy
- At each iteration, pick the highest weight edge between nodes not yet picked

Stage 2: Multiple species case: Greedy approach

- From the k-partite graph described by R ,
- Pick largest weight edge $R_{i j}$
- In every other species, find if a node is the best match to both i and j. If such a node exists, add it.
- Add secondary nodes which have good-enough matches to selected nodes

Stage 2:Multiple species case: IsoRankN

Find high-weight near-cliques using spectral technique:

- For each node v, construct its Star S_{v}, consisting of nodes with largest-weight edges to it
- At each step:
- Pick the star S_{v} with highest total weight
- Spectral partitioning to identify approx-clique S^{*} vat contains v
- Use Personalized PageRank algorithm
- Join two sets $S^{*}{ }_{v 1}$ and $S^{*}{ }_{v 2}$ if their nodes have large-weight edges to each other

Results: 2-species case: Yeast-Fly alignment

- \# of edges in the common subgraph: 1420

Various Topologies Are Found

Existing local alignment methods often find only
specific topologies

IsoRankN: functional coherence

$$
H\left(S_{v}^{*}\right)=-\sum_{t} p_{t} \log p_{t}
$$

where p_{t} is the fraction of times GO/KEGG term t occurs in node-set

	IsoRankN	IsoRank	Graemlin- 1 K	Graemlin- $\mathbf{2 K}$	NetworkBLAST -M
Normalized GO/KEGG entropy	0.179	0.359	0.451	0.357	0.554
Exact Cluster Ratio	0.380	0.253	0.306	0.355	0.291

IsoRankN: coverage

k	IsoRankN	IsoRank	Graemlin-1K	Graemlin-2K
2	8739	20580	4650	5899
3	13533	13391	5414	5072
4	13991	15422	5371	2067
5	12715	9744	1467	78
Total	48978	59539	20903	16026

Number of proteins in clusters with exactly k species

IsoBase

Parameters						
Species		All				
Genes/keywords		CG4252				
Total ortholog clusters		1				
Download: LiAB						of 1
Ortholog cluster \#6256				Entropy: 0.918296		
Species	Gene	DIP	Description	External links	KEGG	GO
Caenorhabditis elegans	atl-1 (T06E4.3)		The atl-1 gene encodes a large, 2514-residue protein of the ATM family, homologous to human AT (OMIM:208900, mutated in ataxia telangiectasia). the C-terminal sequence of ATL-1 contains a Pl-3 kinase-like domain. ATL-1 is required for survival through early embryogenesis and normal chromosomal segregation. atl-1 is expressed in both the mitotic and meiotic cells of adult gonads. [Source: WormBase]	[View]		[View] ${ }^{\text {a }}$
Drosophila melanogaster	mei-41 (FBgn0004367)		meiotic 41	[View]"	K06640	[View]"
Mus musculus	Atr (ENSMUSG00000032409)		ataxia telangiectasia and Rad3 related Gene	[View]		[View] ${ }^{\text {a }}$
Saccharomyces cerevisiae	MEC1 (YBR136W)	DIP:799N	Serine/threonine-protein kinase MEC1 (EC 2.7.11.1) (DNA-damage checkpoint kinase MEC1) (Mitosis entry checkpoint protein 1) (ATR homolog). [Source:UniProtKB/SwissProt;Acc:P38111]	[View]"	K02543	[View]'؛
Homo sapiens	ATR		ataxia telangiectasia and Rad3 related	[View ${ }^{\text {a }}$	K06640	[View] ${ }^{\text {a }}$

Outline

- Introduction to Protein Interactions
- Algorithms for PPI Networks:

Data Acquisition

Influence flow:

- combine with RNAi

Influence Flow

Goal: generate hypotheses about signaling networks' structure

Why?

- Understanding signaling networks is very valuable
- Old view of signaling cascade seems too naïve, need a network picture

How?

- RNA interference data provides signaling information
- PPI provides routing information
- Look for a simple explanation that is consistent with both

Acknowledgments

- Collaborators:
- Adam Friedman, Norbert Perrimon \& Bonnie Berger
- Future Work in collaboration with George Tucker and Vinu Arunachalam
- Previously presented/published:
- ISMB 2007 (highlights track)

Other work:
Yeang et al. (2004)
Ourfali et al (2007)
Yeger-Lotel et al. (2009)

Screening for MAPK pathway regulators with RNAi

Whole genome screen for regulators of MAPK pathway
-hundreds of hits (331)

- 56% of genes have unknown function

Goal: a simple explanation consistent with data and known biology

\section*{| H |
| :--- |
| H |
 $\frac{11}{2}$}

Biological info

Influence Network

Problem Formulation

Given

1. Undirected PPI data for the species
2. [Optional] Augment with cross-species PPI data or expression data
3. The end-effector G_{p} of the pathway P being investigated
4. RNAi scores, with score S_{i} indicates impact of knocking-down gene G_{i} on the activity of the end-effector G_{p}
5. Known, high-confidence estimate of P 's core cascade

Find

1. A directed, sparse network with edges directed along the way signal might flow, finally ending in the end-effector G_{p}

Evaluation

1. Provide only a subset of the pathway's known components as input. See if the remaining components are discovered

Using The Core Cascade

Core cascade should be the central trunk of the influence network

Algorithm: Preliminary Processing

Algorithm: Preliminary Processing

Add core cascade

Occam's Razor:

 simple, sparse solution
Algorithm: Preliminary Processing

Map RNAi data

Occam's Razor:

 simple, sparse solution
Algorithm: Preliminary Processing

Select RNAi subgraph

Occam's Razor:

 simple, sparse solution
Influence Flow: prune edges and assign direction

Multi-commodity flow

Integer Linear Program

$y_{B C}$ indicates if edge $\mathrm{B}-\mathrm{C}$ with direction $\mathrm{B} \rightarrow \mathrm{C}$ is selected

Look for as few edges as possible

$y_{B C}$ indicates if edge $\mathrm{B}-\mathrm{C}$ with direction $B \rightarrow C$ is selected

Imposing directionality using RNAi Scores

previous

constraints
\&

$$
f_{i j}^{k}=0 \forall k
$$

if

$$
S_{i}-S_{j}<\Delta
$$

$f_{P Y}^{D}=$ flow of type D , along $\mathrm{P} \rightarrow \mathrm{Y}$
or
i in core cascade

Connections to the core cascade

How much flow goes tilirough this node?

$$
\sum_{e \in \sigma^{-}(k)} f_{e}^{k}=z_{k}
$$

for all x not in core cascade

$$
z_{p}-z_{x} \geq h
$$

Maximize h

Results: can rediscover parts of the core cascade

Results: can rediscover parts of the core cascade

Results: using full MAPK cascade

Results: using full MAPK cascade

- Introduction to Protein Interactions
- Algorithms for PPI Networks:

Data Acquisition

Goal: computationally predict if two

 proteins physically interactWhy?

- Prune the list of interactions to test
- Help identify experimental errors

How?

- Use ideas from structural biology
- Machine Learning approach: pose as a classification task

Acknowledgments

- Collaborators:
- Struct2Net: Jinbo Xu \& Bonnie Berger
- Struct2Net-DB: Daniel Park, Jinbo Xu, Raghu Hosur \& Bonnie Berger
- Previously presented/published:
- PSB 2006
- Nucleic Acids Research (Web Server Issue), 2010

Why: the data is not nearly enough...

Main problems:

- $O\left(n^{2}\right)$: Too many possible interactions
- High-throughput methods are error-prone 0.25

Problem Formulation

Given

1. two protein sequences
2. a database of protein-complex structures
3. [Optional] measures of functional relationships between the two proteins

Find

probability of interaction between the two proteins

Evaluation

1. Using known PPI data, construct datasets of high-confidence positive and negative examples
2. Estimate predictive power on this dataset

Previous Approaches vs. Us

- Guilt by association: proteins that interact often have similar functional characteristics
- Pose as a classification problem.
- Missing data issues
- Biological models: correlated mutations, sequence domains
- We use a structure-based approach:
- Can figure out why/how an interaction happens
- Works even when functional data is unavailable

Outline of Our Approach

Input Sequences

Predicting Interaction Using Structure

Input Sequences

Compute most-likely structure of the complex

Assess if the energy scores of the complex are low enougt

Joint Homology Modeling

- Goal: Find optimal alignment of sequence t Θ. template structure
Protein Structure
Positions or residues in red are gaps

Energy Scores \rightarrow Interaction Probability

- Want to summarize multiple energy scores into one probability score
- Logistic Regression

$S_{1} \ldots S_{K}$ are energy scores, then energy \rightarrow
$\mathrm{P}\left(\right.$ interact $\left.\mid S_{1} \ldots S_{K}\right)=\operatorname{logit}\left(a_{1} S_{1}+\ldots+a_{K} S_{K}\right)$
where, $\operatorname{logit}(x)=\frac{1}{1+e^{-x}}$

Model Selection: which features to use

- We tried various combinations of energy scores, including normalized-energy scores to the set of parameters

$$
S_{\text {normalized }}=\frac{S}{\text { mean sequence length }}
$$

- Model selection to identify the best predictors
- AIC based feature selection
- L1-norm regularized logistic regression
$\min _{\theta} \sum-\log (p(y \mid \mathbf{x} ; \theta)) \rightarrow \min _{\theta} \sum-\log (p(y \mid \mathbf{x} ; \theta))+\beta|\theta|_{1}$
- Normalized energy and alignment scores win over raw scores

Outline of our approach

Input Sequences

Random Forests

- Extend the decision tree idea

X1<5

What if the value along $\times 2$ is not known?

- Make many trees:
- Each trained on only a subset of features
- To classify a new point, take majority vote

T3

Using only Structure-based Method

Structure + Other Information

Comparison with Lin et al, BMC Bioinfo., 2004

Struct2Net DB

13 predicted interactions for: tsa1 (TSA2)

1 experimentally observed interaction from BioGRID

Organism: Saccharomyces cerevisiae
Symbol: TSA2
Aliases: cTPxll
Description: Stress inducible cytoplasmic thioredoxin peroxidase; cooperates with Tsa1p in the removal of reactive oxygen, nitrogen and sulfur species using thioredoxin as hydrogen donor; deletion enhances the mutator phenotype of tsa1 mutants

Gene Ontology:

[View] 2
External links: EntrezGene, SGD

PREDICTED INTERACTIONS:						
Gene	Organism	Logistic regression score	Description	Gene Ontology	In BioGRID?	Aliases
TSA2	S. cerevisiae	0.579	Stress inducible cytoplasmic thioredoxin peroxidase; cooperates with Tsa1p in the removal of reactive oxygen, nitrogen and sulfur species using thioredoxin as hydrogen donor; deletion enhances the mutator phenotype of tsa1 mutants	[View] 2	no	2
TSA1	S. cerevisiae	0.575	Thioredoxin peroxidase, acts as both a ribosomeassociated and free cytoplasmic antioxidant; self-associates to form a high-molecular weight chaperone complex under oxidative stress; deletion results in mutator phenotype	[View] 2	yes	2
PRX1	S. cerevisiae	0.547	Mitochondrial peroxiredoxin (1-Cys Prx) with thioredoxin peroxidase activity, has a role in reduction of hydroperoxides; reactivation requires $\operatorname{Tr} 2 \mathrm{p}$ and glutathione; induced during respiratory growth and oxidative stress; phosphorylated	[View] §	no	2
SRX1	S. cerevisiae	0.521	Sulfiredoxin, contributes to oxidative stress resistance by reducing cysteine-sulfinic acid groups in the peroxiredoxins Tsa1p and Ahp1p that are	[View] 2	no	2

Outline

- Introduction to Protein Interactions
- Algorithms for PPI Networks:

Data Acquisition

ProbModel2H

Goal: identify false-positives in Yeast 2Hybrid data

Why?

- Systematic false positives can occur
- "at times, the functional co-relevance of two proteins scored as interacting in the two-hybrid system is unlikely." (Serebriiskii et al, Biotechniques, 2000)
- "Y2H screens suffer from false positives, i.e. interactions that appear to take place only in the context of the Y2H assay" (Stellberger et al, Protein Science, 2010)

How?

- Bayesian model to identify "promiscuous" proteins

Acknowledgments

- Collaborators:
- David Sontag \& Bonnie Berger
- Previously presented/published:
- PSB 2007

Errors in Y 2 H experiments

True Positive

False Negative Actual
 Sgnal

True Negative

Problem Formulation

Given

1. Datasets D_{1}, D_{2}, \ldots of Y 2 H data for a single species, each from a single experimental setup. Each D_{i} is a list of protein-pairs.
2. [Optional] For some dataset D_{i}, a score indicating confidence in each data-point in D_{i}
3. [Optional] Other datasets (e.g. from Literature) indicating interaction between proteins in the species

Find

1. for each protein-pair, probability of true interaction
2. for each protein, an estimate of its Y 2 H promiscuity

Evaluation

1. Using known Y2H and CoIP PPI data, construct datasets of high-confidence positive and negative examples of Y2H PPIs
2. Estimate predictive power on this dataset

- Some previous approaches:
- Require overlap between Y2H \& Co-IP data
- Use repetition data from each experiment
- Product of node-degrees (Bader et al.)
- Us:
- Set up a Bayesian framework to identify promiscuous proteins
- Can learn across multiple datasets

Initial approach: Generative Model

Results: Generative Model

Logistic Regression Approach: Bader et al.
Uetz Ito CORE Literature Shared Node

Our Logistic Regression Model

Results: Logistic Regression Models

The Bayesian Model Really Helps in Certain Cases

Medium degree with positive hit in Uetz or Literature

High degree

We Get More Fine-grained Promiscuity Estimates

Protein	Degree P (promiscuous)	Protein	Degree P(promiscuous)		
YJR091C	285	0.389	YGL127C	68	0.125
YMR047C	125	0.481	YDR034C	63	0.495
YLR295C	124	0.513	YLR423C	60	0.373
YNL189W	122	0.5	YML064C	54	0.516
YPR086W	99	0.492	YGL070C	44	0.435
YER022W	98	0.253	YKL002W	40	0.484
YER081W	95	0.486	YDR318W	34	0.297
YHR114W	91	0.491	YGR218W	34	0.182
YLR447C	88	0.498	YDL153C	32	0.274
YLR453C	79	0.498	YLR373C	31	0.457
YLR288C	78	0.498	YPLO70W	30	0.492

Thanks!

- Bonnie Berger
- Dave Gifford \& Srini Devadas
- Patrice Macaluso
- Berger Group: Allen, Andrew, Beckett, Charlie, Danny, George, Irene, Jinbo, Leonid, Luke, Michael, Mike, Nathan, Patrick, Shannon...
- Perrimon Lab @ HMS: Adam Friedman, Chris Bakal, Norbert Perrimon

