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Protein interactions are crucial to the
cellular system

 Proteins interact with other proteins to perform their
functions

« Many cellular activities are a result of protein
interactions
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Numbers from http://www.ensembl.org



In recent years, the approach to PPI
analysis has changed

 Old perspective: low-throughput, structural

« New perspective: high-throughput, graph-based

G-protein complex

Old perspective New perspective

Image from www.rcsb.org



High-throughput experiments are
roviding a lot of PPI data...
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An Example PPI Network: Yeast

http://compbio.pbworks.com/f/1166443065/protein_map.gif
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IsoRank & IsoRankN
Goal: global alignment of PPl networks I

Why?

- Comparative genomics on a network level

- Estimate functional orthologs: gene correspondences
across species

How?

- Intuition: match nodes whose neighborhood topologies
match

- Construct an eigenvalue problem
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Network Alignment: Local vs. Global

@

Local alignment #1 ! § Local alighment #2

 Local vs. global alignment

- Getting an overall match vs querying small patterns

 Parallels with sequence alighment (local vs. global)



Network Alignment: Local vs. Global

j Local alignment #2

»

%@ Local alignment #1

Local alignments: More than one mapping per node

 Local vs. global alignment

- Getting an overall match vs qu

 Parallels with sequence alignment (local vs. globa



Network Alignment: Local vs. Global

Global alignment

 Local vs. global alignment

- Getting an overall match vs querying small patterns

 Parallels with sequence alighment (local vs. global)



Problem Formulation

Hz 12}

Given .
1. Two or more undirected PPI graphs, one per species. Each
graph contains all known PPIs for the species

2. [Optional] Pairwise similarity scores between proteins of the
various species

Find
1. Cross-species mapping between nodes of the various graphs.
Must be closed under transitivity.
2. Estimate the common PPI subgraph across various species
3. [Optimality] Given just PPl graphs, maximize common
subgraph size
Evaluation
1. Quality of mapping: 1) GO enrichment, 2) other orthologs
2. Coverage



Algorithm: IsoRank

Fz' ab b7

ab b7 1e-2 a3 bl

ab bl 2e-8 a7 b9

a5 b3 1e-7 a6 b6
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a3 bl 5e-4 azc b4

a3 b6 3e-9 Mapping

Similarity Score a2-b4 g a4-b5

Scores for
a5 b7 2.1 each possible a5-b a7-b9
a3 b9 1.5 node mapping
a3 b2 3.4 a3-bl

ab-bb



Computing R: just network similarity

* Rj; depends on neighborhoods of i and j
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Example: Computed R; values

o R

al 42 a3
ab

Empty cell indicates R;; = O



Example: Computed R; values

o R

al 42 a3
ab

Empty cell indicates R;; = O



Computing R is an eigenvalue problem

« The equations for R describe an eigenvalue problem .

R=AR
Alij[uv] =

N (U)][N (V)
i N1 = # nodes in Graph 1
SIZG(A) — N1N2 X N1N2 N2 = # nodes in Graph 2

* A is about 108x108 when aligning yeast and fly networks
- However, both A and R are very sparse.

- We use the Power method to efficiently compute R

- Extension to weighted edges is straightforward



Computing R: including sequence data

- Let B;; = similarity score between i (from .
graph #1) and j from (graph #2)

R=aARHl—-a)E
0<a<l



Algorithm: IsoRank
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a3 b6 3e-9 Mapping

Similarity Score a2-b4 g a4-b5
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Stage 2: Two-species case

Compute one-to-one ma

bl b5@
bi—@

b4y

Strategy #1: Max Weighted Bipartite matching

Strategy #2:. Greedy

At each iteration, pick the highest weight edge between nodes
not yet picked



Stage 2: Multiple species case:

Greed% aggr‘oach

®

* From the k-partite graph described by R,
- Pick largest weight edge R;;

- In every other species, find if a node is the best
match to both i and j. If such a node exists, add it.

- Add secondary nodes which have good-enough
matches to selected nodes



Stage 2:Multiple species case:
IsoRankN

Find high-weight near-cliques using spectral I
technique:

- For each node v, construct its Star S, consisting of
nodes with largest-weight edges to it

- At each step:

 Pick the star S, with highest total weight
 Spectral partitioning to identify approx-clique S*, that
contains v
» Use Personalized PageRank algorithm

- Join two sets $*,, and S*, , if their nodes have large-weight
edges to each other



Results: 2-species case: Yeast-Fly
alignment

* # of edges in the common subgraph: 1420
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Various Topologies Are Found
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specific topologies
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IsoRankN: functional coherence

H(S;) = — > pelogp
t

where p, is the fraction of times GO/KEGG term t occurs in node-set

IsoRankN | IsoRank | Graemlin- Graemlin- | NetworkBLAST
1K 2K -M

Normalized 0.179 0.359 0.451 0.357 0.554
GO/KEGG entropy
Exact Cluster 0.380 0.253 0.306 0.355 0.291

Ratio




IsoRankN: coverage

- IsoRankN Graemlin-1K | Graemlin-2K

8739 20580 4650 5899
3 13533 13391 5414 5072
4 13991 15422 5371 2067
5 12715 9744 1467 78
Total 48978 59539 20903 16026

Number of proteins in clusters with exactly k species




IsoBase

Parameters
Species All
Genes/keywords CG4252
Total ortholog clusters 1
Download: 1 of 1
'Ortholog cluster #6256 |Entropy: 0.918296
Species Gene DIP Description E::;’"a' KEGG Go
The atl-1 gene encodes a large, 2514-residue
protein of the ATM family, homologous to human
AT (OMIM-208900, mutated in ataxia
telangiectasia). the C-terminal sequence of
Caenorhabditis ATL-1 contains a PI-3 kinase-like domain. ATL-1 S S
elegans 2iSILAE o2 is required for survival through early ESE S
embryogenesis and normal chromosomal
segregation. atl-1 is expressed in both the mitofic
and meiotic cells of adult gonads. [Source:
WormBase]
Drosophila . - N -
melanogaster mei-41 (FBgnO004367) meiotic 41 [View]-+ KO6640 [View]: s
Atr , : . A"y et
Mus musculus (ENSMUSGO00000032409) ataxia telangiectasia and Rad3 related Gene [View] [Wiew] s
Serine/threonine-protein kinase MEC1 (EC
R T 2.7.11.1) (DNA-damage checkpoint kinase . _
s e ¥ MEC1 (YBR13BW) DIP:799N MEC1) (Mitosis entry checkpoint protein 1) (ATR  [View]:« K02543 [View]:
homolog). [Source:UniProtkKB/Swiss-
Prot;Acc:P38111]
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Influence Flow

Goal: generate hypotheses about signaling
networks’ structure

Why?

- Understanding signaling networks is very valuable

- 0Old view of signaling cascade seems too naive, need a network
picture

How?
- RNA interference data provides signaling information
- PPI provides routing information

- Look for a simple explanation that is consistent with both
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Screening for MAPK pathway
requlators with RNAi

I, MAPK V) @

Pathway

S
N A¢

B —

Whole genome screen for
regulators of MAPK pathway

ehundreds of hits (331)
nuclear targets | cytoplasmic targets .56% Of genes have unknown
function




Goal: a simple explanation consistent
with data and known biolo

Q\ ﬁ A 3.1

RNA1 D 12.0

hits @&k [ [..

PPI
network

Influence Network

Biological
info




Problem Formulation

Given
1. Undirected PPI data for the species

1. [Optional] Augment with cross-species PPl data or expression data
2. The end-effector G, of the pathway P being investigated

3. RNAi scores, with score S; indicates impact of knocking-down
gene G;on the activity of the end-effector G,

4. Known, high-confidence estimate of P’s core cascade

Find

1. A directed, sparse network with edges directed along the way
signal might flow, finally ending in the end-effector G,

Evaluation

1. Provide only a subset of the pathway’s known components as
input. See if the remaining components are discovered




Using The Core Cascade

Core cascade should be
the central trunk of the
influence network

nuclear targets | cytoplasmic targets




Algorithm: Preliminary Processing

D (2.0

hits

cascade

Core g RNAI

PPI
network

\_

Occam's Razor:
simple, sparse solution




Algorithm: Preliminary Processing

D (2.0

hits

cascade

Core g RNAI

PPI
network

\_

Add core cascade

Occam's Razor:
simple, sparse solution




Algorithm: Preliminary Processing

- A
Core g RNAI

cascade hits

PPI
network

\_

Map RNAi data

Occam's Razor:
simple, sparse solution




Algorithm: Preliminary Processing

(r'e g RNAI 12

cascade hits

PPI
network

\_

Select RNAi subgraph

Occam's Razor:
simple, sparse solution




Influence Flow: prune edges and
assign direction

Multi-commodity flow



Integer Linear Program

from source Z fek — Z fek =1

eed (r) eed " (r)
. K k

conservationy_ f— > f* =0

eed (V) eed’ (v)
k k

; | into sink Z fe - Z fe =-1
/! @@ eed (k) ke66+(k)
s capacity f <Yy,

ch = flow of type D, along B—»C

o ye = O’l

-
e
-

fC[; ="flow of type D, along C—B

yBC indicates if edge B-C with direction B—C is selected



Look for as few edges as possible

previous
constraints

&
-1 ed
;tfeeges Zye :n_l

@Tj Yo indicates if edge B-C with direction
B—C is selected



Imposing directionality using RNAI

Scores

3.5

2.0

fps = flow of type D, along P—Y

previous
constraints

if

or

-

S, —S, <A

&
S fh=0 vk
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Connections to the core cascade

.........
. e

o .
o

.
How much flow goes

........---t-lTrough this node? -
Desired Avoid
K __
Z fe o Zk
ecd (K)
for all x not in core cascade
Z,—Z,2h

Maximize h



Results: can rediscover parts of the
core cascade
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Results: can rediscover parts of the
core cascade




Results: using full MAPK cascade




Results: using full MAPK cascade
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StructZ2Net

Goal: computationally predict if two
proteins physically interact

Why?

- Prune the list of interactions to test

- Help identify experimental errors

How?
- Use ideas from structural biology

- Machine Learning approach: pose as a classification task
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Why: the data is not nearly enough...

200000

Growth in PPI data
O - [ . [ . [ I [ I [ I [ I [ I [ I [ I [ I [
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Main PrOblemSI Fraction of Proteins with Known

- O(n?): Too many possible " | s

interactions
0.5 -

- High-throughput
methods are error-prone o.25 -

O I I I I I—I
PPI statistics based on data from BIOGRID Yeast Fly Worm Human  Mouse




Problem Formulation

Given
1. two protein sequences

2. a database of protein-complex structures

3. [Optional] measures of functional relationships between the
two proteins

Find

probability of interaction between the two proteins

Evaluation

1. Using known PPI data, construct datasets of high-confidence
positive and negative examples

2. Estimate predictive power on this dataset



Previous Approaches vs. Us

 Guilt by association: proteins that interact
often have similar functional characteristics

- Pose as a classification problem.

- Missing data issues

 Biological models: correlated mutations,
sequence domains

« We use a structure-based approach:
- Can figure out why/how an interaction happens

- Works even when functional data is unavailable



Outline of Our Approach

Input Sequences

RGPPQLIK... ll EGAATQY... Other Data

Structure-based

: il Classifier
Interaction Prediction

Probability
of Interaction



Predicting Interaction Using Structure

—+

Input Sequences BEgZONIEN RCTVNIO oW




Joint Homology Modeling

» Goal: Find optimal alighment of sequence @i

template structure
Raptor

Protein Structure

T N L K K Y E T L [-----

Protein Sequence

Positions or residues in red are gaps



Energy Scores — Interaction Probability

Z

)
« Want to summarize multiple energy scores into
one probability score

 Logistic Regression

prob. of interaction

S....5, are energy scores, then  enhergy —

[P( interact | S,...5y) = logit(a,S,+ ...+ a,Sy) J

1
1+ eX

where, logit(x) =



Model Selection: which features to
use

« We tried various combinations of energy scores,
including normalized-energy scores to the set of
parameters <

Snormalized ~ mean sequence length

* Model selection to identify the best predictors
- AIC based feature selection

- L1-norm regularized logistic regression

ming > —log(p(y[x; #)) — ming 2 —log(p(y|x; 0))+5|0[s

* Normalized energy and alighment scores win
over raw scores



Outline of our approach

Input Sequences

RGPPQLIK... § EGAATQY...

Ny

Joint Homology Modeling

. i 1
Crrv:rtllrn, ;‘xrnn

910,10 ~ --2.31. -540 4,
‘1‘ j "E\A

nittcravudurr yyere [

Logistic Regression

I
I
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-890,, [
[
[
I
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Probability
of Interaction



Random Forests

e Extend the decision tree idea S
. X1<5

\

¢ "o & "o

X1l X2 X3 X4 X5

What if the value along
is not known ?

« Make many trees:

- Each trained on only a subset of
features T

- To classify a new point, take T2
majority vote

T3



Using only Structure-based Method
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Structure + Other Information

Comparison with Lin et al, BMC Bioinfo., 2004

105% -
95% -

85% -
Our method

B Zhang et al

HLin et al

75% -

65% -

55% A

45% -

Sensitivity Specificity




Struct2Net DB

13 predicted interactions for: tsal (TSAZ)

1 experimentally observed interaction from BioGRID

Organism: Saccharomyces cerevisiae
Symbol: TSAZ

Aliases: cTPxll

Description: Stress inducible cytoplasmic thioredoxin peroxidase; cooperates with Tzalp in the removal of reactive oxygen, nitrogen and sulfur species using thioredoxin as hydrogen

donor; deletion enhances the mutator phenotype of tzal mutants

Gene Ontology:
[View] =

External links: EntrezGene, SGD

PREDICTED INTERACTIONS:
Logistic In
Gene Organism regression||Description Gene Ontology BioGRID? Aliases
score & 7
Stress inducible cytoplasmic thioredoxin peroxidase;
cooperates with Tzalp in the removal of reactive
TSAZ 5. cereviziae 0.579 oxygen, nitrogen and sulfur species  using [Wiew] Ty no |i1
thioredoxin as hydrogen donor; deletion enhances
the mutator phenotype of tsal mutants
Thicredoxin peroxidase, actz as both a ribosome-
associated and free cytoplasmic antioxidant,
T3A1 5. cereviziae 0.575 self-azsociates to form a high-molecular weight [Wiew] 4 VEs |-'-1
chaperone complex under oxidative stress; deletion
resultz in mutator phenotype
Mitochondrial peroxiredoxin (1-Cys  Prx} with
thioredoxin peroxidase activity, hazs a role in
PRX1 5. cereviziae 0.547 reduction of hydroperoxides, reactivation reguires [Wiew] 7o no |:1
TrrZzp and glutathione; induced during respiratory
growth and oxidative stress; phosphorylated
Sulfiredoxin, confributes to oxidative =stress
rezistance by reducing cysteine-sulfinic acid groups
SHX1 =. cereviziae 0.521 in the peroxiredoxing Tsalp and Ahplp that are [Wiew] 7o no |.'.1

Frrmmad sman msrmemies de meridande s ssmmeeend e
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ProbModel2H

Goal: identify false-positives in Yeast
2Hybrid data

Why?

- Systematic false positives can occur

« “at times, the functional co-relevance of two proteins scored as interacting in
the two-hybrid system is unlikely.” (Serebriiskii et al, Biotechniques, 2000)

« “Y2H screens suffer .... from false positives, i.e. interactions that appear to take
place only in the context of the Y2H assay” (Stellberger et al, Protein Science,

2010)

How?

- Bayesian model to identify “promiscuous” proteins
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Errors in Y2H experiments

True Positive

True Negative

e 2 d
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Problem Formulation

Given

N
1. Datasets D,, D,, ... of Y2H data for a single species, each from
a single experimental setup. Each D; is a list of protein-pairs.

2. [Optional] For some dataset D;, a score indicating confidence
in each data-point in D,

3. [Optional] Other datasets (e.g. from Literature) indicating
interaction between proteins in the species

Find
1. for each protein-pair, probability of true interaction

2. for each protein, an estimate of its Y2H promiscuity

Evaluation

1. Using known Y2H and ColP PPI data, construct datasets of
high-confidence positive and negative examples of Y2H PPIs

2. Estimate predictive power on this dataset



Previous Work vs. Us

- Some previous approaches:

- Require overlap between Y2H & Co-IP data
- Use repetition data from each experiment

- Product of node-degrees (Bader et al.)
* Us:

- Set up a Bayesian framework to identify
promiscuous proteins

- Can learn across multiple datasets



Initial approach: Generative Model
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Results: Generative Model
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Logistic Regression Approach: Bader
et al.

Uetz Ito CORE Literature Shared Node

\ \ Neighbors degt;'ees

S
=]
o
Q
L
N
I

/

ij=1.N




Our Logistic Regression Model

Literature

Uetz data

HZ [2powqgodd

k=1..N

Ito
promiscuous




Results: Logistic Regression Models
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The Bayesian Model Really Helps in
Certain Cases

True positive rate

el |

0.6 F

04 F
02 Bayesian LR with noise model
Bader
Random
0 [ ] 1 [ ] [ ]

0 0.2 0.4 0.6 0.8 1

False positive rate

Medium degree with
positive hit in Uetz or
Literature

True positive rate
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We Get More Fine-grained

Promiscuity Estimates

Protein
YJRO91C
YMR047C
YLR295C
YNL189W
YPRO86W
YERO22W
YERO81W
YHR114W
YLR447C
YLR453C
YLR288C

285
125
124
122
99
98
95
91
88
79
78

Degree P(promiscuous)

0.389
0.481
0.513

0.5
0.492
0.253
0.486
0.491
0.498
0.498
0.498

Protein
YGL127C
YDR0O34C
YLR423C
YML0O64C
YGLO70C
YKLOO2W
YDR318W
YGR218W
YDL153C
YLR373C
YPLO70W

Degree P(promiscuous)

68
63
60
54
44
40
34
34
32
31
30

0.125
0.495
0.373
0.516
0.435
0.484
0.297
0.182
0.274
0.457
0.492
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